
 
Schema Mappings 

and  
Data Examples 

 
An Interplay between Syntax and Semantics 

                                Phokion G. Kolaitis 
                        UC Santa Cruz  &  IBM Research – Almaden 
 

      
                                                                        



2 

Logic and Databases 

 Logic provides both a unifying framework and a set of tools 
for formalizing and studying data management tasks. 

 
 The interaction between logic and databases started with the 

introduction of the relational data model by E.F. Codd in 
1969.  

 
 It continues today across a wide spectrum of topics in 

database management. 
 
 This talk is about the role of logic in data interoperability.  
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The Data Interoperability Challenge 

 Data may reside 
 at several different sites 
 in several different formats (relational, XML, …). 
 

 Applications need to access and process all these data. 
 

  Growing market of enterprise data interoperability tools: 
 About $4B in 2012; growing at about 9% per year. 
 

 Data interoperability is thought to consume about 40% of the 
budget of enterprise IT shops 

             (Bernstein and Haas, CACM 2008) 
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Theoretical Aspects of Data Interoperability 

The research community has studied two different, but  
closely related, facets of data interoperability: 
  
 Data Integration (aka Data Federation) 
 
 Data Exchange  (aka Data Translation) 
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Data Integration 
Query heterogeneous data in different sources via a virtual  
global schema 
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Virtual integration  
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Data Exchange 

    Transform data structured under a source schema into data 
structured under a different target schema. 

            S               T 

     Σ 

I J 

Source Schema   Target Schema 

Materialization 
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Challenges in Data Interoperability 

Fact: 
 Data interoperability tasks require expertise, effort, and time. 
 Key challenge:  Specify the relationship between schemas. 
 
Earlier approach:  
 Experts generate complex transformations that specify the 

relationship as programs or as SQL/XSLT scripts. 
 Costly process, little automation. 
 
More recent approach:  Use Schema Mappings 
 Higher level of abstraction that separates the design of the 

relationship between schemas from its implementation. 
 Schema mappings can be compiled into SQL/XSLT scripts 

automatically. 
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             Schema Mappings 

Source  S    Target  T 

   

 
 Schema Mapping M = (S, T, Σ) 

 Source schema  S, Target schema T 
 High-level, declarative assertions Σ that specify the 

relationship between S and T.  
 Typically, Σ is a finite set of formulas in some suitable 

logical formalism (much more on this later). 
 Schema mappings are the essential building blocks 
    in formalizing data integration and  data exchange. 

 
 

 

Σ 
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Schema-Mapping Systems: State-of-the-Art 

Source schema S Target schema T 

Visual spec. 

Declarative Schema Mappings 

Executable code 
(XSLT, XQuery, SQL, Java) 

I 
J 

Generic architecture 
of schema-mapping 

systems 
e.g., 

IBM Clio, HePToX 
Altova MapForce 

Stylus Studio 
MS Biztalk Mapper 
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Schema Mappings 

 
 
 
However, schema mappings can be complex … 
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Visual Specification 
 Screenshot from Bernstein and Haas 2008 CACM article. 

“Information Integration in the Enterprise” 
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Schema Mappings (one of many pages) 
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Schema mappings can be complex 

 Additional tools are needed (beyond the visual specification) 
to design, understand, and refine schema mappings. 

 
 Idea:  Use “good” data examples. 

 Analogous to using test cases in 
understanding/debugging programs. 

 Earlier work by the database community includes: 
 Yan, Miller, Haas, Fagin – 2001  
    “Understanding and Refinement of Schema Mappings” 
 Gottlob, Senellart – 2008  
    “Schema mapping discovery from data instances” 
 Olston, Chopra, Srivastava – 2009 
    “Generating Example Data for Dataflow Programs”. 
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Schema Mappings and Data Examples 
 
Research Goals: 
 
 
 Develop a framework for the systematic investigation of 

the interaction between schema mappings and data 
examples. 
 
 

 Understand both the capabilities and limitations of 
data examples in capturing, deriving, and designing 
schema mappings. 
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Collaborators and References 
 
Bogdan Alexe, Balder ten Cate, Victor Dalmau, Wang-Chiew Tan 
 
 Characterizing Schema Mappings via Data Examples 

 Alexe, ten Cate, K …, Tan   - ACM TODS 2011  (earlier in PODS 2010) 
 

 Database Constraints and Homomorphism Dualities 
 ten Cate, K …, Tan   - CP 2010 
 

 Designing and Refining Schema Mappings via Data Examples 
    Alexe, ten Cate, K …, Tan - SIGMOD 2011 

 
 EIRENE: Interactive Design and Refinement of Schema Mappings via Data 

Examples 
    Alexe, ten Cate, K …, Tan -  VLDB 2011 (demo track) 

 
 Learning Schema Mappings 
    ten Cate, Dalmau, K …  -    ACM TODS 2013  (earlier  in ICDT 2012) 
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Schema-Mapping Specification Languages 

 
 Question:  
    What is a good language for specifying schema mappings? 
 
 Preliminary Attempt:  
    Use a logic-based language to specify schema mappings.   
    In particular, use first-order logic.  

 
 Warning:   
    Unrestricted use of first-order logic as a schema-mapping 

specification language gives rise to undecidability of basic 
algorithmic problems about schema mappings. 
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Schema-Mapping Specification Languages 

Let us consider some simple tasks that every schema-mapping specification  
language should support: 

 Copy (Nicknaming): 
 Copy each source table to a target table and rename it. 

 Projection: 
 Form a target table by projecting on one or more columns of a source 

table. 
 Column Augmentation: 

 Form a target table by adding one or more columns to a source table. 
 Decomposition: 

 Decompose a source table into two or more target tables. 
 Join: 

 Form a target table by joining two or more source tables. 
 Combinations of the above (e.g., join + column augmentation) 
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Schema-Mapping Specification Languages 

 Copy (Nicknaming): 
 8x1, …,xn(P(x1,…,xn) ! R(x1,…,xn)) 

 Projection: 
 8x,y,z(P(x,y,z) ! R(x,y)) 

 Column Augmentation: 
 8x,y (P(x,y) ! 9 z R(x,y,z)) 

 Decomposition: 
 8x,y,z (P(x,y,z) ! R(x,y)Æ T(y,z)) 

 Join: 
 8x,y,z(E(x,z)ÆF(z,y) ! R(x,z,y)) 

 Combinations of the above (e.g., join + column augmentation + …) 
 8x,y,z(E(x,z)Æ F(z,y) ! 9 w (R(x,y) Æ T(x,y,z,w))) 
 



19 

Source-to-Target Tuple-Generating Dependencies 

Fact: All preceding tasks can be specified using 
 source-to-target tuple-generating dependencies (s-t tgds): 
                  8x (ϕ(x) → ∃y ψ(x, y)), where 
 ϕ(x)     is a conjunction of atoms over the source;  
 ψ(x, y) is a conjunction of atoms over the target.  
They are also known as  
GLAV (global-and-local-as-view) constraints. 
 

 They generalize LAV (local-as-view) constraints: 
                8x ( P(x)  →  ∃y ψ(x, y)), where P is a source relation. 

 They generalize GAV (global-as-view) constraints: 
             8x  (ϕ(x)  →  R(x)),  where R is a target relation. 
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  LAV and GAV Constraints 

    Examples of LAV (local-as-view) constraints: 
 Copy and projection 
 Decomposition: 8x 8y 8z (P(x,y,z) ! R(x,y) Æ T(y,z)) 
  8x 8y (E(x,y) ! 9 z (H(x,z)Æ H(z,y)))  

 
Examples of GAV (global-as-view) constraints: 
 Copy and projection 
 Join:  8x 8y 8z (E(x,y) Æ E(y,z) ! F(x,z)) 

 
Note:   
     8s 8c (Student (s) ∧ Enrolls(s,c) → ∃g Grade(s,c,g)) 
is a GLAV constraint that is neither a LAV nor a GAV constraint 
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             Schema Mappings 

Source  S    Target  T 

   

 
 Schema Mapping M = (S, T, Σ) 

 Source schema  S, Target schema T 
 High-level, declarative constraints Σ that specify the 

relationship between S and T.  
 GLAV Schema Mapping M = (S, T, Σ) 

  Σ is a finite set of GLAV constraints (s-t tgds) 
 GAV and LAV Schema Mapping defined in a similar 

way. 
 

 
 

Σ 
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                  Data Examples 

Source  S    Target  T 

   

 
   M = (S, T, Σ) a GLAV schema mapping  
 
 Data Example: A pair (I,J) where I is a source instance 

and J is a target instance. 
 Positive Data Example for M:   
 A data example (I,J) that satisfies Σ, i.e., (I,J) ² Σ 
 In this case, we say that J is a solution for I w.r.t. M. 

                     
     

I J 

Σ 
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Schema Mappings and Data Examples 

 M = (S, T, Σ)  GLAV schema mapping 
 This is a finite syntactic object. 

 Sem(M) = { (I,J):  (I,J) is a positive data example for M }  
 Sem(M) is a semantic object that characterizes M; 

however, Sem(M)  is is an infinite set of data examples. 
 
Question:  
Can M be “characterized” using finitely many data examples? 
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Types of Data Examples 

    M = (S, T, Σ) a GLAV schema mapping 
 

 Positive Data Example: 
 A data example (I,J) such that (I,J) satisfies Σ, i.e., a 
 J is a solution for I w.r.t. M. 

 Negative Data Example: 
A data example (I,J) such that (I,J) does not satisfy Σ, i.e., 
J is not a solution for I w.r.t. M. 
 
A third type of example will play an important role here: 

 Universal Data Example: 
    A data example (I,J) such that J is a universal solution for I 

w.r.t. M. 
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Universal Solutions 

Definition:  M = (S, T, Σ) schema mapping, I source instance. 
A target instance J is a universal solution for I w.r.t. M if 
 J is a solution for I w.r.t. M. 
 If J’ is a solution for I w.r.t. M, then there is a homomorphism 

h: J ! J’ that is constant on adom(I), which means that: 
 If P(a1, …,ak) 2 J, then P(h(a1),…h(ak)) 2 J’ 
    (h preserves facts) 
 h(c)=c, for c 2 adom(I). 

 
Note: Intuitively, a universal solution for I is a most general  
(= least  specific) solution for I. 
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GLAV Mappings and Universal Solutions 

Note:  A key property of GLAV mappings is the 
existence of universal solutions.   
 Intuitively, universal solutions are the “most general” solutions. 
 They have become the preferred semantics of data exchange. 

 
Theorem (FKMP 2003) M = (S, T, Σ) a GLAV schema mapping.  
 Every source instance I has a universal solution J w.r.t. M, i.e., a 

solution J for I such that if J’ is another solution for I, then there is a 
homomorphism h: J ! J’ that is constant on adom(I) 

    (h(c)=c, for c 2 adom(I)). 
 Moreover, the chase procedure can be used to construct, given a 

source instance I, a canonical universal solution chaseM(I) for I in 
polynomial time. 
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Universal Solutions in Data Exchange 

Defn: A homomorphism h: J ! J’  is  a  
function sending every constant (non-null)  
value to itself, and preserving facts 
P(a1...an) ∈ J  ⇒ P(h(a1)...h(an))∈J’ 
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Example  

 Consider the schema mapping M = ({E}, {F}, Σ), where   
      Σ = {  E(x,y)  → ∃z (F(x,z) ∧ F(z,y)) } 

 
 Source instance I = { E(1,2) } 

 
 Solutions for I : 
 J1  =  { F(1,X), F(X,2) }                    (universal) 
 J2  =  { F(1,2), F(2,2) }                    (not universal)  
 J3 =  { F(1,X), F(X,2), F(Y,Z) }          (universal) 
 J4 =  { F(1,X), F(X,2), F(Y,Y) }          (not universal) 
             (where X, Y, Z are labeled null values) 
 … 
      



29 

From Syntax to Semantics: Characterizing Schema 
Mappings via Data Examples 

 M = (S, T, Σ)  GLAV schema mapping 
 Sem(M) = { (I,J):  (I,J) is a positive data example for M }  
 
Question:  
Can M be “uniquely characterized” using finitely many data  
examples? 
 
More formally, this asks: 
Is there is a finite set D of data examples such that M is the only 
(up to logical equivalence) schema mapping for which every 
example in D  is of the same type as it is for M? 
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Notions of Unique Characterizability 

Definition:  M = (S, T, Σ) a GLAV schema mapping, C  a class of  
GLAV constraints.  
 Let P and N be two finite sets of positive and negative examples for 

M. We say that P and N uniquely characterize M w.r.t. C  if  
    for every finite set  Σ’ µ C  such that P and N are sets of positive 

and negative examples for M’ = (S, T, Σ’), we have that Σ ´ Σ’. 
 
 Let U be a finite set of universal examples for M. 
    We say that U uniquely characterizes M w.r.t. C  if  
    for every finite set  Σ’ µ C  such that U is a set of universal 
    examples for M’ = (S, T, Σ’), we have that Σ ´ Σ’. 
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Relationships between Unique Characterizability Notions 

 Facts: 
 Unique characterizability via positive and negative 

examples implies unique characterizability via universal 
examples. 

 
 The converse, however, is not always true. 
 

 
 For this reason, we will focus on unique characterizability via 

universal examples. 
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Unique Characterizations via Universal Examples 

Reminder -  
 
Definition:  Let M = (S, T, Σ) be a GLAV schema mapping. 
 
 A universal example for M is a data example (I,J) such that J is a 

universal solution for I w.r.t. M. 
 

 Let U be a finite set of universal examples for M, and let C  be a 
class of GLAV constraints.  

    We say that U uniquely characterizes M w.r.t. C  if  
    for every finite set  Σ’ µ C  such that U is a set of universal 
    examples for the schema mapping M’ = (S, T, Σ’), 
    we have that Σ ´ Σ’. 
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Unique Characterizations via Universal Examples 

 
 
Question:  
Which GLAV schema mappings can be uniquely 
characterized by a finite set of universal examples and  
w.r.t. to what classes of constraints? 
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Unique Characterizations Warm-Up 

Theorem:  Let M be the binary copy schema mapping specified  
by the constraint  8x 8y (E(x,y) ! F(x,y)). 
 
 The set U = { ( I1, J1) } with  I1 = { E(a,b }, J1 = { F(a,b) } 

uniquely characterizes M w.r.t. the class of all LAV 
constraints. 

 
 There is a finite set U’ consisting of three universal examples 

that uniquely characterizes M w.r.t. the class of all GAV 
constraints. 
 

 There is no finite set of universal examples that uniquely 
characterizes M w.r.t. the class of all GLAV constraints. 
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Unique Characterizations Warm-Up 

The set U’ = { (I1,J1), (I2,J2), (I3,J3) } uniquely characterizes the  
copy schema mapping w.r.t. to the class of all GAV constraints. 
 
 J1 

a b a b 

a b a b 

c d 

e 

c d 

e 

 I2  J2 

I3 J3 

I1 
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Unique Characterizations of LAV Mappings 

Theorem:  If M = (S, T, Σ) is a LAV schema mapping, 
then there is a finite set U of universal examples that 
uniquely characterizes M w.r.t. the class of all LAV  
constraints. 
Hint of Proof:  
 Let d1, d2, …, dk be k distinct elements, where  
    k = maximum arity of the relations in S. 
 U consists of all universal examples (I, J) with 
    I = { R(c1,…,cm) }  and J = chaseM({ R(c1,…,cm) }), 

where  each ci is one of the dj’s. 
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Unique Characterizations of GAV Mappings 

Note: Recall that for the schema mapping specified by the  
binary copy constraint  8x 8y (E(x,y)! F(x,y)), there is a finite 
set of universal examples that uniquely characterizes it w.r.t. the 
class of all GAV constraints.   
 
In contrast,  
  
Theorem:  Let M be the GAV schema mapping specified by  
8x 8y 8u 8v 8w (E(x,y)Æ E(u,v) Æ E(v,w)Æ E(w,u) ! F(x,y)). 
There is no finite set of universal examples that uniquely 
characterizes M w.r.t. the class of all GAV constraints. 
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Characterizing GAV Schema Mappings 

 Question: 
 What is the reason that some GAV schema mappings are 

uniquely characterizable w.r.t. the class of all GAV 
constraints while some others are not? 

 Is there an algorithm for deciding whether or not a given 
GAV schema mapping is uniquely characterizable w.r.t. the 
class of all GAV constraints? 

 
 Answer: 

 The answers to these questions are closely connected to 
database constraints and homomorphism dualities. 
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Homomorphisms 

Notation:  A, B relational structures (e.g., graphs) 
 A ! B means there is a homomorphism h from A to B,  
    i.e., a function h from the universe of A to the universe of B 

such that if P(a1,…,am) is  a fact of A, then  
    P(h(a1), …, h(am)) is a fact of B. 

 Example:  G ! K2 if and only if G is 2-colorable 
 

  !A  = {B : B ! A }  
 Example:  !K2  =  Class of 2-colorable graphs 
 

  A! = {B: A ! B} 
 Example:  K2!  =  Class of graphs with at least one edge. 
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Homomorphism Dualities 
 Definition:   Let D and F be two relational structures 

 (F,D) is a duality pair if for every structure A 

     A ! D if and only if  (F ↛ A). 

     In symbols,   !D  =  F↛  
 In this case, we say that F is an obstruction for D. 
 

 Examples: 
 For graphs,  (K2, K1) is a duality pair, since 

                  G ! K1  if and only if  K2 ↛ G. 

 Gallai-Hasse-Roy-Vitaver Theorem (~1965) for directed graphs 
    Let Tk be the linear order with k elements, Pk+1 be the path with  
    k+1 elements.  Then (Pk+1, Tk) is a duality pair, since for every H                              

  H ! Tk  if and only  if Pk+1 ↛ H. 
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Homomorphism Dualities 

 Theorem (König 1936): A graph is 2-colorable if and only if it 
     contains no cycle of odd length. 
     In symbols,    →K2  = ∩i≥0 (C2i+1↛). 

 
 Definition: Let F and D be two sets of structures. We say that 

(F, D) is a duality pair if for every structure A, TFAE 
 There is a structure D in D such that A ! D. 

 For every structure F in F, we have F ↛ A. 

     In symbols,    D 2 D (!D) = F 2 F ( F↛). 
    In this case, we say that F is an obstruction set for D. 
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Homomorphism Dualities 

 
 
 
 

The Yin 
“Dreams”:   i ( !Di )  

The Yang 
“Fears”:  i ( Fi!)  

Duality Pair (F,D),where 

F = {F1,F2,…} 

D = {D1,D2,…} 
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Unique Characterizations and 
Homomorphism Dualities 

Theorem: Let M = (S, T, Σ) be a GAV  mapping. 
Then the following statements are equivalent: 
 
 M is uniquely characterizable via universal examples 

w.r.t. the class of all GAV constraints. 
 
 For every target relation symbol R, the set F (M,R) of 

the canonical structures of the GAV constraints in Σ 
with R as their head is the obstruction set of some finite 
set of structures. 
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Canonical Structures of GAV Constraints 

Definition: 
 The canonical structure of a GAV constraint 
              ∀x (ϕ1(x) ∧ ... ∧ ϕκ(x) → R(xi1

,…,xim
))  

 is the structure consisting of the atomic facts ϕ1(x), ..., ϕκ(x) 
and having constant symbols c1,…,cm interpreted by the 
variables xi1

,…,xim
in the atom R(xi1

,…,xim
). 

 
 
 Let M = (S, T, Σ) be a GAV schema mapping. 
    For every relation symbol R in T, let F (M,R) be the set of all 

canonical structures of GAV constraints in Σ with the target 
relation symbol R in their head.  
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Canonical Structures 

Examples: 
 

 GAV constraint ¾   
                          (E(x,y)Æ E(y,z) ! F(x,z)) 

 Canonical structure: A¾ = ({x,y,z}, {(E(x,y),E(y,z)},x,z) 
 Constants c1 and c2 interpreted by the distinguished elements x 

and z. 
 

 GAV constraint µ 

                           (E(x,y)Æ E(y,z) ! F(x,x)) 
 Canonical structure: A¿ = ({x,y,z}, {E(x,y),E(y,z)},x,x) 
 Constants c1 and c2 both interpreted by the distinguished 

element x. 
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Unique Characterizations and 
Homomorphism Dualities 

Theorem: Let  M = (S, T, Σ) be a GAV mapping. 
Then the following statements are equivalent: 
 
 M is uniquely characterizable via universal examples w.r.t. the 

class of all GAV constraints. 
 

 For every target relation symbol R, the set F (M,R) of the 
canonical structures of the GAV constraints in Σ with R as 
their head is the obstruction set of some finite set of 
structures. 
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Unique Characterizations and 
Homomorphism Dualities 
 
Question: 
 

 Is there an algorithm to decide when a GAV mapping is 
uniquely characterizable via a finite set of universal 
examples w.r.t. to the class of all GAV constraints? 
 

 If so, what is the complexity of this decision problem? 
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Complexity of Unique Characterizations of 
GAV Mappings 
Theorem: 
 The following problem is NP-complete: 
    Given a GAV mapping M, is it uniquely characterizable via 

universal examples w.r.t. the class of all GAV constraints. 
 
 This problem is in LOGSPACE if M is in normal form, i.e.,  
    F (M,R) consists of pairwise incomparable cores. 
 
 Algorithm:  A certain acyclicity test. 

 
Note:  
 Extends results of Foniok, Nešetřil, and Tardif – 2008. 
 Every GAV mapping can be transformed to a logically 

equivalent one in normal form. 
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Applications 

 
 If M is a GAV mapping specified by a tgd in which all variables in 

the LHS are exported to the RHS, then M is uniquely 
characterizable. 
  Copy tgd:   8 x 8 y (E(x,y) ! F(x,y))  

 
 The GAV schema mapping M specified by  
                  8 x 8 y 8 u (E(x,y) Æ E(u,u) ! F(x,y))  
     is not uniquely characterizable. 
 
 The GAV schema mapping M specified by  
                  8 x 8 y 8 z (E(x,z) Æ E(z,y) ! F(x,y))  
     is uniquely characterizable. 
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From Syntax to Semantics 

Summary: 
 Necessary and sufficient condition in terms of homomorphism 

dualities for unique characterizations of GAV mappings 
  Complexity of Decision Problem: 
 NP-complete for arbitrary GAV mappings 
 In LOGSPACE for GAV mappings in normal form. 
 

Open Problem: 
 Unique characterizations of GLAV schema mappings? 
 Is it a decidable problem? 
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From Semantics to Syntax: Deriving Schema 
Mappings from Data Examples 
 
 The Fitting Problem for a Class C of Schema Mappings: 
    Given a finite set of data examples, is there a schema 

mapping in C for which they are universal? 
 

 Learnability of Schema Mappings: 
    Can we learn a goal schema mapping from data examples in  
    some learning theory model?  
    (e.g., Angluin’s model of  
            exact learning with membership queries). 
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Complexity & Algorithms for the Fitting 
Problem 
Theorem: 
 The fitting problem for GAV mappings is DP-complete. 
 
 The fitting problem for GLAV mappings is ¦2

p -complete. 
 
 There is an algorithm, based on a homomorphism extension test,  

that, given a finite set of data examples, 
 Tests for the existence of a fitting mapping. 
 If there is a fitting schema mapping, then the algorithm produces 

the most general GAV fitting mapping or 
    the most general GLAV fitting mapping, where most general 

means that it is implied by every other fitting mapping. 
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EIRENE: A System for Deriving Schema Mappings 
Interactively 
 Interactive design of schema mappings from data examples 

via the fitting algorithms for GLAV and GAV mappings 

I1 J1 
… 

Fitting GLAV schema mapping or report “none exists” 

Ik Jk 
User insert/delete/modify 
data examples 

GLAV Fitting Algorithm 

S T 

Data Examples Source and Target Schemas 
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Learning Schema Mappings 

 Angluin’s model of exact learning with membership queries is 
very natural in this setting. 

 
 Schema-Mapping-Reverse-Engineering Problem: 
    We have a “black box” (object code) for performing data 

exchange, i.e., object code for producing, given a source 
instance I, a universal solution J for I.  Can we use it to 
recover the underlying schema mapping? 
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Learning GAV Mappings 

Theorem:  Let S be a source schema, T a target schema, and let 
GAV(S, T) be the of all GAV mappings  M = (S, T, Σ). 
 
 GAV(S, T) is efficiently exactly learnable with equivalence and 

membership queries. 
 
 GAV(S, T) is not efficiently exactly learnable with only equivalence 

queries or only membeship queries, unless the source schema S 
consists of unary relation symbols only. 
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Concluding Remarks 

Summary:  Rich interplay between syntax and semantics  
for schema mappings and data examples: 
 Unique characterizability 
 Fitting problem 
 Learning schema mappings from data examples. 
 
Ongoing Work and Next Steps: 
 Criterion for unique characterizability of GLAV mappings. 

 
 Unique characterizability, fitting, and learning of schema mappings 

in richer languages: 
 GLAV mappings + target constraints 
 Disjunctive tuple-generating dependencies 
 

 Schema-mapping derivation as an optimization problem in a cost 
model developed by Gottlob and Senellart. 
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