

Schema Mappings

and
Data Examples

An Interplay between Syntax and Semantics

 Phokion G. Kolaitis
 UC Santa Cruz & IBM Research – Almaden

2

Logic and Databases

 Logic provides both a unifying framework and a set of tools
for formalizing and studying data management tasks.

 The interaction between logic and databases started with the

introduction of the relational data model by E.F. Codd in
1969.

 It continues today across a wide spectrum of topics in

database management.

 This talk is about the role of logic in data interoperability.

3

The Data Interoperability Challenge

 Data may reside
 at several different sites
 in several different formats (relational, XML, …).

 Applications need to access and process all these data.

 Growing market of enterprise data interoperability tools:
 About $4B in 2012; growing at about 9% per year.

 Data interoperability is thought to consume about 40% of the
budget of enterprise IT shops

 (Bernstein and Haas, CACM 2008)

4

Theoretical Aspects of Data Interoperability

The research community has studied two different, but
closely related, facets of data interoperability:

 Data Integration (aka Data Federation)

 Data Exchange (aka Data Translation)

5

Data Integration
Query heterogeneous data in different sources via a virtual
global schema

I1

Global
Schema I2

I3 Sources

query

 S1

S2

 S3

T

Q

Virtual integration

6

Data Exchange

 Transform data structured under a source schema into data
structured under a different target schema.

 S T

 Σ

I J

Source Schema Target Schema

Materialization

7

Challenges in Data Interoperability

Fact:
 Data interoperability tasks require expertise, effort, and time.
 Key challenge: Specify the relationship between schemas.

Earlier approach:
 Experts generate complex transformations that specify the

relationship as programs or as SQL/XSLT scripts.
 Costly process, little automation.

More recent approach: Use Schema Mappings
 Higher level of abstraction that separates the design of the

relationship between schemas from its implementation.
 Schema mappings can be compiled into SQL/XSLT scripts

automatically.

8

 Schema Mappings

Source S Target T

 Schema Mapping M = (S, T, Σ)

 Source schema S, Target schema T
 High-level, declarative assertions Σ that specify the

relationship between S and T.
 Typically, Σ is a finite set of formulas in some suitable

logical formalism (much more on this later).
 Schema mappings are the essential building blocks
 in formalizing data integration and data exchange.

Σ

9

Schema-Mapping Systems: State-of-the-Art

Source schema S Target schema T

Visual spec.

Declarative Schema Mappings

Executable code
(XSLT, XQuery, SQL, Java)

I
J

Generic architecture
of schema-mapping

systems
e.g.,

IBM Clio, HePToX
Altova MapForce

Stylus Studio
MS Biztalk Mapper

10

Schema Mappings

However, schema mappings can be complex …

11

Visual Specification
 Screenshot from Bernstein and Haas 2008 CACM article.

“Information Integration in the Enterprise”

12

Schema Mappings (one of many pages)

13

Schema mappings can be complex

 Additional tools are needed (beyond the visual specification)
to design, understand, and refine schema mappings.

 Idea: Use “good” data examples.

 Analogous to using test cases in
understanding/debugging programs.

 Earlier work by the database community includes:
 Yan, Miller, Haas, Fagin – 2001
 “Understanding and Refinement of Schema Mappings”
 Gottlob, Senellart – 2008
 “Schema mapping discovery from data instances”
 Olston, Chopra, Srivastava – 2009
 “Generating Example Data for Dataflow Programs”.

14

Schema Mappings and Data Examples

Research Goals:

 Develop a framework for the systematic investigation of

the interaction between schema mappings and data
examples.

 Understand both the capabilities and limitations of
data examples in capturing, deriving, and designing
schema mappings.

15

Collaborators and References

Bogdan Alexe, Balder ten Cate, Victor Dalmau, Wang-Chiew Tan

 Characterizing Schema Mappings via Data Examples

 Alexe, ten Cate, K …, Tan - ACM TODS 2011 (earlier in PODS 2010)

 Database Constraints and Homomorphism Dualities
 ten Cate, K …, Tan - CP 2010

 Designing and Refining Schema Mappings via Data Examples
 Alexe, ten Cate, K …, Tan - SIGMOD 2011

 EIRENE: Interactive Design and Refinement of Schema Mappings via Data

Examples
 Alexe, ten Cate, K …, Tan - VLDB 2011 (demo track)

 Learning Schema Mappings
 ten Cate, Dalmau, K … - ACM TODS 2013 (earlier in ICDT 2012)

16

Schema-Mapping Specification Languages

 Question:
 What is a good language for specifying schema mappings?

 Preliminary Attempt:
 Use a logic-based language to specify schema mappings.
 In particular, use first-order logic.

 Warning:
 Unrestricted use of first-order logic as a schema-mapping

specification language gives rise to undecidability of basic
algorithmic problems about schema mappings.

17

Schema-Mapping Specification Languages

Let us consider some simple tasks that every schema-mapping specification
language should support:

 Copy (Nicknaming):
 Copy each source table to a target table and rename it.

 Projection:
 Form a target table by projecting on one or more columns of a source

table.
 Column Augmentation:

 Form a target table by adding one or more columns to a source table.
 Decomposition:

 Decompose a source table into two or more target tables.
 Join:

 Form a target table by joining two or more source tables.
 Combinations of the above (e.g., join + column augmentation)

18

Schema-Mapping Specification Languages

 Copy (Nicknaming):
 8x1, …,xn(P(x1,…,xn) ! R(x1,…,xn))

 Projection:
 8x,y,z(P(x,y,z) ! R(x,y))

 Column Augmentation:
 8x,y (P(x,y) ! 9 z R(x,y,z))

 Decomposition:
 8x,y,z (P(x,y,z) ! R(x,y)Æ T(y,z))

 Join:
 8x,y,z(E(x,z)ÆF(z,y) ! R(x,z,y))

 Combinations of the above (e.g., join + column augmentation + …)
 8x,y,z(E(x,z)Æ F(z,y) ! 9 w (R(x,y) Æ T(x,y,z,w)))

19

Source-to-Target Tuple-Generating Dependencies

Fact: All preceding tasks can be specified using
 source-to-target tuple-generating dependencies (s-t tgds):
 8x (ϕ(x) → ∃y ψ(x, y)), where
 ϕ(x) is a conjunction of atoms over the source;
 ψ(x, y) is a conjunction of atoms over the target.
They are also known as
GLAV (global-and-local-as-view) constraints.

 They generalize LAV (local-as-view) constraints:
 8x (P(x) → ∃y ψ(x, y)), where P is a source relation.

 They generalize GAV (global-as-view) constraints:
 8x (ϕ(x) → R(x)), where R is a target relation.

20

 LAV and GAV Constraints

 Examples of LAV (local-as-view) constraints:
 Copy and projection
 Decomposition: 8x 8y 8z (P(x,y,z) ! R(x,y) Æ T(y,z))
 8x 8y (E(x,y) ! 9 z (H(x,z)Æ H(z,y)))

Examples of GAV (global-as-view) constraints:
 Copy and projection
 Join: 8x 8y 8z (E(x,y) Æ E(y,z) ! F(x,z))

Note:
 8s 8c (Student (s) ∧ Enrolls(s,c) → ∃g Grade(s,c,g))
is a GLAV constraint that is neither a LAV nor a GAV constraint

21

 Schema Mappings

Source S Target T

 Schema Mapping M = (S, T, Σ)

 Source schema S, Target schema T
 High-level, declarative constraints Σ that specify the

relationship between S and T.
 GLAV Schema Mapping M = (S, T, Σ)

 Σ is a finite set of GLAV constraints (s-t tgds)
 GAV and LAV Schema Mapping defined in a similar

way.

Σ

22

 Data Examples

Source S Target T

 M = (S, T, Σ) a GLAV schema mapping

 Data Example: A pair (I,J) where I is a source instance

and J is a target instance.
 Positive Data Example for M:
 A data example (I,J) that satisfies Σ, i.e., (I,J) ² Σ
 In this case, we say that J is a solution for I w.r.t. M.

I J

Σ

23

Schema Mappings and Data Examples

 M = (S, T, Σ) GLAV schema mapping
 This is a finite syntactic object.

 Sem(M) = { (I,J): (I,J) is a positive data example for M }
 Sem(M) is a semantic object that characterizes M;

however, Sem(M) is is an infinite set of data examples.

Question:
Can M be “characterized” using finitely many data examples?

24

Types of Data Examples

 M = (S, T, Σ) a GLAV schema mapping

 Positive Data Example:
 A data example (I,J) such that (I,J) satisfies Σ, i.e., a
 J is a solution for I w.r.t. M.

 Negative Data Example:
A data example (I,J) such that (I,J) does not satisfy Σ, i.e.,
J is not a solution for I w.r.t. M.

A third type of example will play an important role here:

 Universal Data Example:
 A data example (I,J) such that J is a universal solution for I

w.r.t. M.

25

Universal Solutions

Definition: M = (S, T, Σ) schema mapping, I source instance.
A target instance J is a universal solution for I w.r.t. M if
 J is a solution for I w.r.t. M.
 If J’ is a solution for I w.r.t. M, then there is a homomorphism

h: J ! J’ that is constant on adom(I), which means that:
 If P(a1, …,ak) 2 J, then P(h(a1),…h(ak)) 2 J’
 (h preserves facts)
 h(c)=c, for c 2 adom(I).

Note: Intuitively, a universal solution for I is a most general
(= least specific) solution for I.

26

GLAV Mappings and Universal Solutions

Note: A key property of GLAV mappings is the
existence of universal solutions.
 Intuitively, universal solutions are the “most general” solutions.
 They have become the preferred semantics of data exchange.

Theorem (FKMP 2003) M = (S, T, Σ) a GLAV schema mapping.
 Every source instance I has a universal solution J w.r.t. M, i.e., a

solution J for I such that if J’ is another solution for I, then there is a
homomorphism h: J ! J’ that is constant on adom(I)

 (h(c)=c, for c 2 adom(I)).
 Moreover, the chase procedure can be used to construct, given a

source instance I, a canonical universal solution chaseM(I) for I in
polynomial time.

27

Universal Solutions in Data Exchange

Defn: A homomorphism h: J ! J’ is a
function sending every constant (non-null)
value to itself, and preserving facts
P(a1...an) ∈ J ⇒ P(h(a1)...h(an))∈J’

28

Example

 Consider the schema mapping M = ({E}, {F}, Σ), where
 Σ = { E(x,y) → ∃z (F(x,z) ∧ F(z,y)) }

 Source instance I = { E(1,2) }

 Solutions for I :
 J1 = { F(1,X), F(X,2) } (universal)
 J2 = { F(1,2), F(2,2) } (not universal)
 J3 = { F(1,X), F(X,2), F(Y,Z) } (universal)
 J4 = { F(1,X), F(X,2), F(Y,Y) } (not universal)
 (where X, Y, Z are labeled null values)
 …

29

From Syntax to Semantics: Characterizing Schema
Mappings via Data Examples

 M = (S, T, Σ) GLAV schema mapping
 Sem(M) = { (I,J): (I,J) is a positive data example for M }

Question:
Can M be “uniquely characterized” using finitely many data
examples?

More formally, this asks:
Is there is a finite set D of data examples such that M is the only
(up to logical equivalence) schema mapping for which every
example in D is of the same type as it is for M?

30

Notions of Unique Characterizability

Definition: M = (S, T, Σ) a GLAV schema mapping, C a class of
GLAV constraints.
 Let P and N be two finite sets of positive and negative examples for

M. We say that P and N uniquely characterize M w.r.t. C if
 for every finite set Σ’ µ C such that P and N are sets of positive

and negative examples for M’ = (S, T, Σ’), we have that Σ ´ Σ’.

 Let U be a finite set of universal examples for M.
 We say that U uniquely characterizes M w.r.t. C if
 for every finite set Σ’ µ C such that U is a set of universal
 examples for M’ = (S, T, Σ’), we have that Σ ´ Σ’.

31

Relationships between Unique Characterizability Notions

 Facts:
 Unique characterizability via positive and negative

examples implies unique characterizability via universal
examples.

 The converse, however, is not always true.

 For this reason, we will focus on unique characterizability via

universal examples.

32

Unique Characterizations via Universal Examples

Reminder -

Definition: Let M = (S, T, Σ) be a GLAV schema mapping.

 A universal example for M is a data example (I,J) such that J is a

universal solution for I w.r.t. M.

 Let U be a finite set of universal examples for M, and let C be a
class of GLAV constraints.

 We say that U uniquely characterizes M w.r.t. C if
 for every finite set Σ’ µ C such that U is a set of universal
 examples for the schema mapping M’ = (S, T, Σ’),
 we have that Σ ´ Σ’.

33

Unique Characterizations via Universal Examples

Question:
Which GLAV schema mappings can be uniquely
characterized by a finite set of universal examples and
w.r.t. to what classes of constraints?

34

Unique Characterizations Warm-Up

Theorem: Let M be the binary copy schema mapping specified
by the constraint 8x 8y (E(x,y) ! F(x,y)).

 The set U = { (I1, J1) } with I1 = { E(a,b }, J1 = { F(a,b) }

uniquely characterizes M w.r.t. the class of all LAV
constraints.

 There is a finite set U’ consisting of three universal examples

that uniquely characterizes M w.r.t. the class of all GAV
constraints.

 There is no finite set of universal examples that uniquely
characterizes M w.r.t. the class of all GLAV constraints.

35

Unique Characterizations Warm-Up

The set U’ = { (I1,J1), (I2,J2), (I3,J3) } uniquely characterizes the
copy schema mapping w.r.t. to the class of all GAV constraints.

 J1

a b a b

a b a b

c d

e

c d

e

 I2 J2

I3 J3

I1

36

Unique Characterizations of LAV Mappings

Theorem: If M = (S, T, Σ) is a LAV schema mapping,
then there is a finite set U of universal examples that
uniquely characterizes M w.r.t. the class of all LAV
constraints.
Hint of Proof:
 Let d1, d2, …, dk be k distinct elements, where
 k = maximum arity of the relations in S.
 U consists of all universal examples (I, J) with
 I = { R(c1,…,cm) } and J = chaseM({ R(c1,…,cm) }),

where each ci is one of the dj’s.

37

Unique Characterizations of GAV Mappings

Note: Recall that for the schema mapping specified by the
binary copy constraint 8x 8y (E(x,y)! F(x,y)), there is a finite
set of universal examples that uniquely characterizes it w.r.t. the
class of all GAV constraints.

In contrast,

Theorem: Let M be the GAV schema mapping specified by
8x 8y 8u 8v 8w (E(x,y)Æ E(u,v) Æ E(v,w)Æ E(w,u) ! F(x,y)).
There is no finite set of universal examples that uniquely
characterizes M w.r.t. the class of all GAV constraints.

38

Characterizing GAV Schema Mappings

 Question:
 What is the reason that some GAV schema mappings are

uniquely characterizable w.r.t. the class of all GAV
constraints while some others are not?

 Is there an algorithm for deciding whether or not a given
GAV schema mapping is uniquely characterizable w.r.t. the
class of all GAV constraints?

 Answer:

 The answers to these questions are closely connected to
database constraints and homomorphism dualities.

39

Homomorphisms

Notation: A, B relational structures (e.g., graphs)
 A ! B means there is a homomorphism h from A to B,
 i.e., a function h from the universe of A to the universe of B

such that if P(a1,…,am) is a fact of A, then
 P(h(a1), …, h(am)) is a fact of B.

 Example: G ! K2 if and only if G is 2-colorable

 !A = {B : B ! A }
 Example: !K2 = Class of 2-colorable graphs

 A! = {B: A ! B}
 Example: K2! = Class of graphs with at least one edge.

40

Homomorphism Dualities
 Definition: Let D and F be two relational structures

 (F,D) is a duality pair if for every structure A

 A ! D if and only if (F ↛ A).

 In symbols, !D = F↛
 In this case, we say that F is an obstruction for D.

 Examples:
 For graphs, (K2, K1) is a duality pair, since

 G ! K1 if and only if K2 ↛ G.

 Gallai-Hasse-Roy-Vitaver Theorem (~1965) for directed graphs
 Let Tk be the linear order with k elements, Pk+1 be the path with
 k+1 elements. Then (Pk+1, Tk) is a duality pair, since for every H

 H ! Tk if and only if Pk+1 ↛ H.

41

Homomorphism Dualities

 Theorem (König 1936): A graph is 2-colorable if and only if it
 contains no cycle of odd length.
 In symbols, →K2 = ∩i≥0 (C2i+1↛).

 Definition: Let F and D be two sets of structures. We say that

(F, D) is a duality pair if for every structure A, TFAE
 There is a structure D in D such that A ! D.

 For every structure F in F, we have F ↛ A.

 In symbols, D 2 D (!D) = F 2 F (F↛).
 In this case, we say that F is an obstruction set for D.

42

Homomorphism Dualities

The Yin
“Dreams”: i (!Di)

The Yang
“Fears”: i (Fi!)

Duality Pair (F,D),where

F = {F1,F2,…}

D = {D1,D2,…}

43

Unique Characterizations and
Homomorphism Dualities

Theorem: Let M = (S, T, Σ) be a GAV mapping.
Then the following statements are equivalent:

 M is uniquely characterizable via universal examples

w.r.t. the class of all GAV constraints.

 For every target relation symbol R, the set F (M,R) of

the canonical structures of the GAV constraints in Σ
with R as their head is the obstruction set of some finite
set of structures.

44

Canonical Structures of GAV Constraints

Definition:
 The canonical structure of a GAV constraint
 ∀x (ϕ1(x) ∧ ... ∧ ϕκ(x) → R(xi1

,…,xim
))

 is the structure consisting of the atomic facts ϕ1(x), ..., ϕκ(x)
and having constant symbols c1,…,cm interpreted by the
variables xi1

,…,xim
in the atom R(xi1

,…,xim
).

 Let M = (S, T, Σ) be a GAV schema mapping.
 For every relation symbol R in T, let F (M,R) be the set of all

canonical structures of GAV constraints in Σ with the target
relation symbol R in their head.

45

Canonical Structures

Examples:

 GAV constraint ¾
 (E(x,y)Æ E(y,z) ! F(x,z))

 Canonical structure: A¾ = ({x,y,z}, {(E(x,y),E(y,z)},x,z)
 Constants c1 and c2 interpreted by the distinguished elements x

and z.

 GAV constraint µ

 (E(x,y)Æ E(y,z) ! F(x,x))
 Canonical structure: A¿ = ({x,y,z}, {E(x,y),E(y,z)},x,x)
 Constants c1 and c2 both interpreted by the distinguished

element x.

46

Unique Characterizations and
Homomorphism Dualities

Theorem: Let M = (S, T, Σ) be a GAV mapping.
Then the following statements are equivalent:

 M is uniquely characterizable via universal examples w.r.t. the

class of all GAV constraints.

 For every target relation symbol R, the set F (M,R) of the
canonical structures of the GAV constraints in Σ with R as
their head is the obstruction set of some finite set of
structures.

47

Unique Characterizations and
Homomorphism Dualities

Question:

 Is there an algorithm to decide when a GAV mapping is
uniquely characterizable via a finite set of universal
examples w.r.t. to the class of all GAV constraints?

 If so, what is the complexity of this decision problem?

48

Complexity of Unique Characterizations of
GAV Mappings
Theorem:
 The following problem is NP-complete:
 Given a GAV mapping M, is it uniquely characterizable via

universal examples w.r.t. the class of all GAV constraints.

 This problem is in LOGSPACE if M is in normal form, i.e.,
 F (M,R) consists of pairwise incomparable cores.

 Algorithm: A certain acyclicity test.

Note:
 Extends results of Foniok, Nešetřil, and Tardif – 2008.
 Every GAV mapping can be transformed to a logically

equivalent one in normal form.

49

Applications

 If M is a GAV mapping specified by a tgd in which all variables in

the LHS are exported to the RHS, then M is uniquely
characterizable.
 Copy tgd: 8 x 8 y (E(x,y) ! F(x,y))

 The GAV schema mapping M specified by
 8 x 8 y 8 u (E(x,y) Æ E(u,u) ! F(x,y))
 is not uniquely characterizable.

 The GAV schema mapping M specified by
 8 x 8 y 8 z (E(x,z) Æ E(z,y) ! F(x,y))
 is uniquely characterizable.

50

From Syntax to Semantics

Summary:
 Necessary and sufficient condition in terms of homomorphism

dualities for unique characterizations of GAV mappings
 Complexity of Decision Problem:
 NP-complete for arbitrary GAV mappings
 In LOGSPACE for GAV mappings in normal form.

Open Problem:
 Unique characterizations of GLAV schema mappings?
 Is it a decidable problem?

51

From Semantics to Syntax: Deriving Schema
Mappings from Data Examples

 The Fitting Problem for a Class C of Schema Mappings:
 Given a finite set of data examples, is there a schema

mapping in C for which they are universal?

 Learnability of Schema Mappings:
 Can we learn a goal schema mapping from data examples in
 some learning theory model?
 (e.g., Angluin’s model of
 exact learning with membership queries).

52

Complexity & Algorithms for the Fitting
Problem
Theorem:
 The fitting problem for GAV mappings is DP-complete.

 The fitting problem for GLAV mappings is ¦2

p -complete.

 There is an algorithm, based on a homomorphism extension test,

that, given a finite set of data examples,
 Tests for the existence of a fitting mapping.
 If there is a fitting schema mapping, then the algorithm produces

the most general GAV fitting mapping or
 the most general GLAV fitting mapping, where most general

means that it is implied by every other fitting mapping.

53

EIRENE: A System for Deriving Schema Mappings
Interactively
 Interactive design of schema mappings from data examples

via the fitting algorithms for GLAV and GAV mappings

I1 J1
…

Fitting GLAV schema mapping or report “none exists”

Ik Jk
User insert/delete/modify
data examples

GLAV Fitting Algorithm

S T

Data Examples Source and Target Schemas

54

Learning Schema Mappings

 Angluin’s model of exact learning with membership queries is
very natural in this setting.

 Schema-Mapping-Reverse-Engineering Problem:
 We have a “black box” (object code) for performing data

exchange, i.e., object code for producing, given a source
instance I, a universal solution J for I. Can we use it to
recover the underlying schema mapping?

55

Learning GAV Mappings

Theorem: Let S be a source schema, T a target schema, and let
GAV(S, T) be the of all GAV mappings M = (S, T, Σ).

 GAV(S, T) is efficiently exactly learnable with equivalence and

membership queries.

 GAV(S, T) is not efficiently exactly learnable with only equivalence

queries or only membeship queries, unless the source schema S
consists of unary relation symbols only.

56

Concluding Remarks

Summary: Rich interplay between syntax and semantics
for schema mappings and data examples:
 Unique characterizability
 Fitting problem
 Learning schema mappings from data examples.

Ongoing Work and Next Steps:
 Criterion for unique characterizability of GLAV mappings.

 Unique characterizability, fitting, and learning of schema mappings

in richer languages:
 GLAV mappings + target constraints
 Disjunctive tuple-generating dependencies

 Schema-mapping derivation as an optimization problem in a cost
model developed by Gottlob and Senellart.

	�Schema Mappings�and �Data Examples��An Interplay between Syntax and Semantics
	Logic and Databases
	The Data Interoperability Challenge
	Theoretical Aspects of Data Interoperability
	Data Integration
	Data Exchange
	Challenges in Data Interoperability
	 Schema Mappings
	Schema-Mapping Systems: State-of-the-Art
	Schema Mappings
	Visual Specification
	Schema Mappings (one of many pages)
	Schema mappings can be complex
	Schema Mappings and Data Examples
	Collaborators and References
	Schema-Mapping Specification Languages
	Schema-Mapping Specification Languages
	Schema-Mapping Specification Languages
	Source-to-Target Tuple-Generating Dependencies
	 LAV and GAV Constraints
	 Schema Mappings
	 Data Examples
	Schema Mappings and Data Examples
	Types of Data Examples
	Universal Solutions
	GLAV Mappings and Universal Solutions
	Universal Solutions in Data Exchange
	Example
	From Syntax to Semantics: Characterizing Schema Mappings via Data Examples
	Notions of Unique Characterizability
	Relationships between Unique Characterizability Notions
	Unique Characterizations via Universal Examples
	Unique Characterizations via Universal Examples
	Unique Characterizations Warm-Up
	Unique Characterizations Warm-Up
	Unique Characterizations of LAV Mappings
	Unique Characterizations of GAV Mappings
	Characterizing GAV Schema Mappings
	Homomorphisms
	Homomorphism Dualities
	Homomorphism Dualities
	Homomorphism Dualities
	Unique Characterizations and Homomorphism Dualities
	Canonical Structures of GAV Constraints
	Canonical Structures
	Unique Characterizations and Homomorphism Dualities
	Unique Characterizations and Homomorphism Dualities
	Complexity of Unique Characterizations of GAV Mappings
	Applications
	From Syntax to Semantics
	From Semantics to Syntax: Deriving Schema Mappings from Data Examples
	Complexity & Algorithms for the Fitting Problem
	EIRENE: A System for Deriving Schema Mappings Interactively
	Learning Schema Mappings
	Learning GAV Mappings
	Concluding Remarks

